Multiple-Instance Learning Via Random Walk
نویسندگان
چکیده
This paper presents a decoupled two stage solution to the multiple-instance learning (MIL) problem. With a constructed affinity matrix to reflect the instance relations, a modified Random Walk on a Graph process is applied to infer the positive instances in each positive bag. This process has both a closed form solution and an efficient iterative one. Combined with the Support Vector Machine (SVM) classifier, this algorithm decouples the inferring and training stages and converts MIL into a supervised learning problem. Compared with previous algorithms on several benchmark data sets, the proposed algorithm is quite competitive in both computational efficiency and classification accuracy.
منابع مشابه
PIGMIL: Positive Instance Detection via Graph Updating for Multiple Instance Learning
Positive instance detection, especially for these in positive bags (true positive instances, TPIs), plays a key role for multiple instance learning (MIL) arising from a specific classification problem only provided with bag (a set of instances) label information. However, most previous MIL methods on this issue ignore the global similarity among positive instances and that negative instances ar...
متن کاملDifferent Learning Levels in Multiple-choice and Essay Tests: Immediate and Delayed Retention
This study investigated the effects of different learning levels, including Remember an Instance (RI), Remember a Generality (RG), and Use a Generality (UG) in multiple-choice and essay tests on immediate and delayed retention. Three-hundred pre-intermediate students participated in the study. Reading passages with multiple-choice and essay questions in different levels of learning were giv...
متن کاملA Conditional Random Field for Multiple-Instance Learning
We present MI-CRF, a conditional random field (CRF) model for multiple instance learning (MIL). MI-CRF models bags as nodes in a CRF with instances as their states. It combines discriminative unary instance classifiers and pairwise dissimilarity measures. We show that both forces improve the classification performance. Unlike other approaches, MI-CRF considers all bags jointly during training a...
متن کاملRandom Walk and Feedback on Scholarly Network
The approach of random walk on heterogeneous bibliographic graph has been proven effective in the previous studies. In this study, by using various kinds of positive and negative feedbacks, we propose the novel method to enhance the performance of meta-path-based random walk for scholarly recommendation. We hypothesize that the nodes on the heterogeneous graph should play different roles in ter...
متن کاملMIForests: Multiple-Instance Learning with Randomized Trees
Multiple-instance learning (MIL) allows for training classifiers from ambiguously labeled data. In computer vision, this learning paradigm has been recently used in many applications such as object classification, detection and tracking. This paper presents a novel multipleinstance learning algorithm for randomized trees called MIForests. Randomized trees are fast, inherently parallel and multi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006